2,553 research outputs found

    The Operational Calculus of Legendre Transforms

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/113680/1/sapm1954331165.pd

    QSO Absorption Line Constraints on Intragroup High-Velocity Clouds

    Full text link
    We show that the number statistics of moderate redshift MgII and Lyman limit absorbers may rule out the hypothesis that high velocity clouds are infalling intragroup material.Comment: 4 pages, no figures; submitted to Astrophysical Journal Letters; revised version, more general and includes more about Braun and Burton CHVC

    Photoionization and Photoelectric Loading of Barium Ion Traps

    Get PDF
    Simple and effective techniques for loading barium ions into linear Paul traps are demonstrated. Two-step photoionization of neutral barium is achieved using a weak intercombination line (6s2 1S0 6s6p 3P1, 791 nm) followed by excitation above the ionization threshold using a nitrogen gas laser (337 nm). Isotopic selectivity is achieved by using a near Doppler-free geometry for excitation of the triplet 6s6p 3P1 state. Additionally, we report a particularly simple and efficient trap loading technique that employs an in-expensive UV epoxy curing lamp to generate photoelectrons.Comment: 5 pages, Accepted to PRA 3/20/2007 -fixed typo -clarified figure 3 caption -added reference [15

    Kinetic pinning and biological antifreezes

    Full text link
    Biological antifreezes protect cold-water organisms from freezing. An example are the antifreeze proteins (AFPs) that attach to the surface of ice crystals and arrest growth. The mechanism for growth arrest has not been heretofore understood in a quantitative way. We present a complete theory based on a kinetic model. We use the `stones on a pillow' picture. Our theory of the suppression of the freezing point as a function of the concentration of the AFP is quantitatively accurate. It gives a correct description of the dependence of the freezing point suppression on the geometry of the protein, and might lead to advances in design of synthetic AFPs.Comment: 4 pages, 4 figure

    Adiabatic Approximation for weakly open systems

    Full text link
    We generalize the adiabatic approximation to the case of open quantum systems, in the joint limit of slow change and weak open system disturbances. We show that the approximation is ``physically reasonable'' as under wide conditions it leads to a completely positive evolution, if the original master equation can be written on a time-dependent Lindblad form. We demonstrate the approximation for a non-Abelian holonomic implementation of the Hadamard gate, disturbed by a decoherence process. We compare the resulting approximate evolution with numerical simulations of the exact equation.Comment: New material added, references added and updated, journal reference adde

    Uniform approximations for pitchfork bifurcation sequences

    Get PDF
    In non-integrable Hamiltonian systems with mixed phase space and discrete symmetries, sequences of pitchfork bifurcations of periodic orbits pave the way from integrability to chaos. In extending the semiclassical trace formula for the spectral density, we develop a uniform approximation for the combined contribution of pitchfork bifurcation pairs. For a two-dimensional double-well potential and the familiar H\'enon-Heiles potential, we obtain very good agreement with exact quantum-mechanical calculations. We also consider the integrable limit of the scenario which corresponds to the bifurcation of a torus from an isolated periodic orbit. For the separable version of the H\'enon-Heiles system we give an analytical uniform trace formula, which also yields the correct harmonic-oscillator SU(2) limit at low energies, and obtain excellent agreement with the slightly coarse-grained quantum-mechanical density of states.Comment: LaTeX, 31 pp., 18 figs. Version (v3): correction of several misprint

    The Population of Weak Mg II Absorbers I. A Survey of 26 QSO HIRES/Keck Spectra

    Full text link
    We present a search for "weak" MgII absorbers [those with W_r(2796) < 0.3 A in the HIRES/Keck spectra of 26 QSOs. We found 30, of which 23 are newly discovered. The spectra are 80% complete to W_r(2796) = 0.02 A and have a cumulative redshift path of ~17.2 for the redshift range 0.4 < z < 1.4. The number of absorbers per unit redshift, dN/dz, is seen to increase as the equivalent width threshold is decreased; we obtained dN/dz = 1.74+/-0.10 for our 0.02 <= W_r(2796) < 0.3 A sample. The equivalent width distribution follows a power law with slope -1.0; there is no turnover down to W_r(2796) = 0.02 A at = 0.9. Weak absorbers comprise at least 65% of the total MgII absorption population, which outnumbers Lyman limit systems (LLS) by a factor of 3.8+/-1.1; the majority of weak MgII absorbers must arise in sub-LLS environments. Tentatively, we predict that ~5% of the Lyman-alpha forest clouds with W_r(1215) > 0.1 A will have detectable MgII absorption to W_r,min(2796) = 0.02 A and that this is primarily a high-metallicity selection effect (Z/Z_sun] > -1). This implies that MgII absorbing structures figure prominently as tracers of sub-LLS environments where gas has been processed by stars. We compare the number density of W_r(2796) > 0.02 A absorbers with that of both high and low surface brightness galaxies and find a fiducial absorber size of 35h^-1 to 63h^-1 kpc, depending upon the assumed galaxy population and their absorption properties. The individual absorbing "clouds" have W_r(2796) <= 0.15 A and their narrow (often unresolved) line widths imply temperatures of ~25,000 K. We measured W_r(1548) from CIV in FOS/HST archival spectra and, based upon comparisons with FeII, found a range of ionization conditions (low, high, and multi-phase) in absorbers selected by weak MgII.Comment: Accepted Version: 43 pages, PostScript figures embedded; accepted to ApJ; updated version includes analysis of CIV absorptio

    Far-off-resonant wave interaction in one-dimensional photonic crystals with quadratic nonlinearity

    Full text link
    We extend a recently developed Hamiltonian formalism for nonlinear wave interaction processes in spatially periodic dielectric structures to the far-off-resonant regime, and investigate numerically the three-wave resonance conditions in a one-dimensional optical medium with χ(2)\chi^{(2)} nonlinearity. In particular, we demonstrate that the cascading of nonresonant wave interaction processes generates an effective χ(3)\chi^{(3)} nonlinear response in these systems. We obtain the corresponding coupling coefficients through appropriate normal form transformations that formally lead to the Zakharov equation for spatially periodic optical media.Comment: 14 pages, 4 figure
    • …
    corecore